更新 exam02_p1.Rmd

This commit is contained in:
yyh 2025-03-20 22:55:45 +08:00
parent 8c42c72cd9
commit 82b7d17695
1 changed files with 168 additions and 38 deletions

View File

@ -9,15 +9,12 @@
数据分析:
```{r}
spider_data <- read.csv("../redback_spider.csv", stringsAsFactors = TRUE)
spider_data <- read.csv("C:\\Users\\31598\\Desktop\\BSI_exam\\worms.csv", stringsAsFactors = TRUE)
str(spider_data)
head(spider_data)
spider_table <- table(spider_data$fate_first_mate, spider_data$second_mate)
spider_table
prop.table(spider_table, margin = 1)
spider_table <- table(spider_data)
```
###Visualization
@ -46,6 +43,7 @@ fisher_test
# 检查卡方检验的期望频数
chisq_test$expected
```
两种统计检验并不同样适合这些数据。卡方检验通常要求每个单元格的期望频数大于5而从上面的输出可以看到有些单元格的期望频数小于5。因此Fisher精确检验更适合这种小样本量的情况它不依赖于大样本近似。
### Conclusion and Discussion
@ -89,61 +87,193 @@ Fisher精确检验的p值为`r fisher_test$p.value`卡方检验的p值为`r c
数据分析:
```{r}
# 读取数据
dolphins <- read.csv("../dolphin_oxygen.csv", stringsAsFactors = TRUE)
data <- read.csv("C:\\Users\\31598\\Desktop\\BSI_exam\\crickets.csv", stringsAsFactors = TRUE)
colnames(data) <- c("group", "value") # 统一列名,便于后续分析
# 确保分组变量是因子类型
data$group <- factor(data$group)
# 查看数据结构
str(dolphins)
head(dolphins)
str(data)
head(data)
# 计算平均氧气消耗量
mean_nonfeeding <- mean(dolphins$oxygenUseNonfeeding)
mean_feeding <- mean(dolphins$oxygenUseFeeding)
# 计算每组的描述性统计量
group_summary <- tapply(data$value, data$group, summary)
group_sd <- tapply(data$value, data$group, sd)
print(group_summary)
print(group_sd)
cat("非捕食潜水的平均氧气消耗量:", mean_nonfeeding, "ml O2/kg\n")
cat("捕食潜水的平均氧气消耗量:", mean_feeding, "ml O2/kg\n")
# 计算样本量
sample_sizes <- table(data$group)
print(sample_sizes)
# 计算组均值(用于后续分析)
group_means <- tapply(data$value, data$group, mean)
print(group_means)
# 获取组别名称(用于后续分析)
group_levels <- levels(data$group)
```
###Visualization
```{r}
plot_title <- "[两组比较的标题]"
y_label <- "[测量变量]"
library(reshape2)
dolphins_long <- melt(dolphins, id.vars = "individual",
variable.name = "dive_type",
value.name = "oxygen_use")
boxplot(oxygen_use ~ dive_type, data = dolphins_long,
main = "钟乳石海豚在不同潜水类型下的氧气消耗量",
xlab = "潜水类型",
ylab = "氧气消耗量 (ml O2/kg)",
# 箱线图与散点图组合
boxplot(value ~ group, data = data,
main = plot_title,
xlab = "组别",
ylab = y_label,
col = c("lightblue", "salmon"),
names = c("非捕食潜水", "捕食潜水"))
border = "black")
# 添加点以显示原始数据
stripchart(value ~ group, data = data,
method = "jitter",
vertical = TRUE,
add = TRUE,
pch = 19,
col = "darkblue")
plot(dolphins$oxygenUseNonfeeding, dolphins$oxygenUseFeeding,
main = "钟乳石海豚的氧气消耗量比较",
xlab = "非捕食潜水氧气消耗量 (ml O2/kg)",
ylab = "捕食潜水氧气消耗量 (ml O2/kg)",
pch = 19, col = "blue")
abline(0, 1, lty = 2) # 添加对角线,表示相等的情况
# 直方图
par(mfrow = c(1, 2))
hist(data$value[data$group == group_levels[1]],
main = paste(group_levels[1], "组直方图"),
xlab = y_label,
col = "lightblue")
hist(data$value[data$group == group_levels[2]],
main = paste(group_levels[2], "组直方图"),
xlab = y_label,
col = "salmon")
par(mfrow = c(1, 1))
# 小提琴图(可选)
if(!require(vioplot)) install.packages("vioplot")
library(vioplot)
with(data,
vioplot(value[group==group_levels[1]],
value[group==group_levels[2]],
names = group_levels,
col = c("lightblue", "salmon"),
main = plot_title,
xlab = "组别",
ylab = y_label))
# 点图加均值和95%置信区间
if(!require(ggplot2)) install.packages("ggplot2")
library(ggplot2)
ggplot(data, aes(x = group, y = value, color = group)) +
geom_point(position = position_jitter(width = 0.2), size = 3, alpha = 0.7) +
stat_summary(fun = mean, geom = "point", shape = 18, size = 5, color = "black") +
stat_summary(fun.data = mean_cl_normal, geom = "errorbar", width = 0.2) +
labs(title = plot_title,
x = "组别",
y = y_label) +
theme_classic() +
scale_color_manual(values = c("blue", "red"))
```
###检查配对t检验的假设
```{r}
diff <- dolphins$oxygenUseFeeding - dolphins$oxygenUseNonfeeding
shapiro.test(diff)
# 1. 检查正态性
# 按组分别检查
shapiro_test1 <- shapiro.test(data$value[data$group == group_levels[1]])
shapiro_test2 <- shapiro.test(data$value[data$group == group_levels[2]])
qqnorm(diff)
qqline(diff)
cat(group_levels[1], "组Shapiro-Wilk正态性检验 p值:", shapiro_test1$p.value, "\n")
cat(group_levels[2], "组Shapiro-Wilk正态性检验 p值:", shapiro_test2$p.value, "\n")
hist(diff, breaks = 5, main = "差异的直方图", xlab = "氧气消耗量差异")
# 确定是否满足正态性假设
normality_assumption_met <- shapiro_test1$p.value > 0.05 & shapiro_test2$p.value > 0.05
cat("正态性假设是否满足:", normality_assumption_met, "\n")
# Q-Q图
par(mfrow = c(1, 2))
qqnorm(data$value[data$group == group_levels[1]],
main = paste(group_levels[1], "组Q-Q图"))
qqline(data$value[data$group == group_levels[1]])
qqnorm(data$value[data$group == group_levels[2]],
main = paste(group_levels[2], "组Q-Q图"))
qqline(data$value[data$group == group_levels[2]])
par(mfrow = c(1, 1))
# 2. 检查方差同质性
var_test <- var.test(value ~ group, data = data)
print(var_test)
# 确定是否满足方差同质性假设
variance_homogeneity_met <- var_test$p.value > 0.05
cat("方差同质性假设是否满足:", variance_homogeneity_met, "\n")
# 3. 确定检验方向
# 查看两组均值差异
cat(group_levels[1], "组均值与", group_levels[2], "组均值的差异:",
group_means[1] - group_means[2], "\n")
# 设置检验方向(根据研究假设修改)
# "two.sided" - 双侧检验(默认)
# "greater" - 单侧检验,假设第一组大于第二组
# "less" - 单侧检验,假设第一组小于第二组
test_alternative <- "two.sided" # 可根据研究假设修改
```
###统计检验:
```{r}
if(normality_assumption_met) {
cat("数据满足正态性假设使用t检验\n")
t_test <- t.test(dolphins$oxygenUseFeeding, dolphins$oxygenUseNonfeeding,
paired = TRUE, alternative = "greater")
t_test
# 根据方差同质性检查结果选择t检验类型
if(variance_homogeneity_met) {
cat("数据满足方差同质性假设使用等方差t检验(var.equal = TRUE)\n")
t_test <- t.test(value ~ group, data = data,
alternative = test_alternative,
var.equal = TRUE)
} else {
cat("数据不满足方差同质性假设使用Welch's t检验(var.equal = FALSE)\n")
t_test <- t.test(value ~ group, data = data,
alternative = test_alternative,
var.equal = FALSE)
}
print(t_test)
# 计算效应量Cohen's d
if(!require(effsize)) install.packages("effsize")
library(effsize)
cohen_d <- cohen.d(value ~ group, data = data)
print(cohen_d)
# 保存检验结果
test_result <- t_test
effect_size <- cohen_d$estimate
effect_size_interpretation <- ifelse(abs(effect_size) < 0.2, "小",
ifelse(abs(effect_size) < 0.5, "小到中",
ifelse(abs(effect_size) < 0.8, "中",
ifelse(abs(effect_size) < 1.2, "大", "非常大"))))
test_name <- ifelse(variance_homogeneity_met, "等方差t检验", "Welch's t检验")
} else {
cat("数据不满足正态性假设,使用非参数检验(Wilcoxon秩和检验)\n")
wilcox_test <- wilcox.test(value ~ group, data = data,
alternative = test_alternative)
print(wilcox_test)
# 计算非参数效应量
if(!require(rstatix)) install.packages("rstatix")
library(rstatix)
wilcox_effsize <- wilcox_effsize(value ~ group, data = data)
print(wilcox_effsize)
# 保存检验结果
test_result <- wilcox_test
effect_size <- wilcox_effsize$effsize
effect_size_interpretation <- wilcox_effsize$magnitude
test_name <- "Wilcoxon秩和检验"
}
# 保存p值和显著性结论
p_value <- test_result$p.value
significance <- ifelse(p_value < 0.05, "显著", "不显著")
```
###结论和讨论: