FScanpy is a Python package designed to predict Programmed Ribosomal Frameshifting (PRF) sites in DNA sequences. This package integrates machine learning models, sequence feature analysis, and visualization capabilities to help researchers rapidly locate potential PRF sites.
FScanpy is a Python package dedicated to predicting Programmed Ribosomal Frameshifting (PRF) sites in DNA sequences. It integrates machine learning models (Gradient Boosting and BiLSTM-CNN) along with the FScanR package to furnish precise PRF predictions. Users are capable of employing three types of data as input: the entire cDNA/mRNA sequence that requires prediction, the nucleotide sequence in the vicinity of the suspected frameshift site, and the peptide library blastx results of the species or related species. It anticipates the input sequence to be in the + strand and can be integrated with FScanR to augment the accuracy.
For the prediction of the entire sequence, FScanpy adopts a sliding window approach to scan the entire sequence and predict the PRF sites. For regional prediction, it is based on the 33-bp and 399-bp sequences in the 0 reading frame around the suspected frameshift site. Initially, the Short model (HistGradientBoosting) will predict the potential PRF sites within the scanning window. If the predicted probability exceeds the threshold, the Long model (BiLSTM-CNN) will predict the PRF sites in the 399bp sequence. Then, ensemble weighting combines the two models to make the final prediction.
For PRF detection from BLASTX output, [FScanR](https://github.com/seanchen607/FScanR.git) identifies potential PRF sites from BLASTX alignment results, acquires the two hits of the same query sequence, and then utilizes frameDist_cutoff, mismatch_cutoff, and evalue_cutoff to filter the hits. Finally, FScanpy is utilized to predict the probability of PRF sites.
[Ribosomal frameshifting](https://en.wikipedia.org/wiki/Ribosomal_frameshift), also known as translational frameshifting or translational recoding, is a biological phenomenon that occurs during translation that results in the production of multiple, unique proteins from a single mRNA. The process can be programmed by the nucleotide sequence of the mRNA and is sometimes affected by the secondary, 3-dimensional mRNA structure. It has been described mainly in viruses (especially retroviruses), retrotransposons and bacterial insertion elements, and also in some cellular genes.