readme更新

This commit is contained in:
ChenLab54 2025-10-23 20:27:55 +08:00
parent 6d5b489f9e
commit fc90ec5cd8
2 changed files with 0 additions and 50 deletions

View File

@ -9,31 +9,6 @@ FScanpy is a comprehensive Python package designed for the prediction of [Progra
![FScanpy Architecture](/tutorial/image/structure.jpeg)
## 🌟 Key Features
### 🎯 **Dual-Model Architecture**
- **Short Model** (`HistGradientBoosting`): Fast screening with 33bp sequences
- **Long Model** (`BiLSTM-CNN`): Deep analysis with 399bp sequences
- **Ensemble Prediction**: Customizable model weights for optimal performance
### 🚀 **Versatile Input Support**
- **Single/Multiple Sequences**: Sliding window prediction across full sequences
- **Region-Based Analysis**: Direct prediction on pre-extracted 399bp regions
- **BLASTX Integration**: Seamless workflow with FScanR pipeline
- **Cross-Species Compatibility**: Built-in databases for viruses, marine phages, Euplotes, etc.
### 📊 **Advanced Visualization**
- **Interactive Heatmaps**: FS site probability visualization
- **Prediction Plots**: Combined probability and confidence displays
- **Customizable Thresholds**: Separate filtering for each model
- **Export Options**: PNG, PDF, and interactive formats
### ⚡ **High Performance**
- **Optimized Algorithms**: Efficient sliding window scanning
- **Batch Processing**: Handle multiple sequences simultaneously
- **Flexible Thresholds**: Tunable sensitivity for different use cases
- **Memory Efficient**: Optimized for large-scale genomic data
## 🔧 Installation
### Prerequisites

View File

@ -9,31 +9,6 @@ FScanpy 是一个专为预测核苷酸序列中[程序性核糖体移码 (PRF)](
![FScanpy 架构](/tutorial/image/structure.jpeg)
## 🌟 核心特性
### 🎯 **双模型架构**
- **短模型** (`HistGradientBoosting`):使用 33bp 序列进行快速筛选
- **长模型** (`BiLSTM-CNN`):使用 399bp 序列进行深度分析
- **集成预测**:可自定义模型权重以获得最佳性能
### 🚀 **多样化输入支持**
- **单/多序列**:对完整序列进行滑动窗口预测
- **基于区域的分析**:直接对预提取的 399bp 区域进行预测
- **BLASTX 集成**:与 FScanR 流程无缝衔接
- **跨物种兼容性**内置病毒、海洋噬菌体、Euplotes 等数据库
### 📊 **高级可视化**
- **交互式热图**FS 位点概率可视化
- **预测图表**:组合概率和置信度显示
- **可定制阈值**:为每个模型单独设置过滤条件
- **导出选项**PNG、PDF 和交互式格式
### ⚡ **高性能**
- **优化算法**:高效的滑动窗口扫描
- **批处理**:同时处理多个序列
- **灵活阈值**:针对不同用例的可调敏感性
- **内存高效**:针对大规模基因组数据进行优化
## 🔧 安装
### 前置条件