219 lines
7.1 KiB
Markdown
219 lines
7.1 KiB
Markdown
# FScanpy
|
|
## A Machine Learning-Based Framework for Programmed Ribosomal Frameshifting Prediction
|
|
|
|
[](README_zh.md)
|
|
[](https://www.python.org/)
|
|
[](LICENSE)
|
|
|
|
FScanpy is a comprehensive Python package designed for the prediction of [Programmed Ribosomal Frameshifting (PRF)](https://en.wikipedia.org/wiki/Ribosomal_frameshift) sites in nucleotide sequences. By integrating advanced machine learning approaches (HistGradientBoosting and BiLSTM-CNN) with the established [FScanR](https://github.com/seanchen607/FScanR.git) framework, FScanpy provides robust and accurate PRF site predictions.
|
|
|
|

|
|
|
|
## 🔧 Installation
|
|
|
|
### Prerequisites
|
|
- Python ≥ 3.9
|
|
- All dependencies are automatically installed
|
|
|
|
### Install via pip (Recommended)
|
|
```bash
|
|
pip install FScanpy
|
|
```
|
|
|
|
### Install from Source
|
|
```bash
|
|
git clone https://github.com/your-org/FScanpy-package.git
|
|
cd FScanpy-package
|
|
pip install -e .
|
|
```
|
|
|
|
## 🚀 Quick Start
|
|
|
|
### Basic Usage
|
|
```python
|
|
from FScanpy import predict_prf
|
|
|
|
# Simple sequence prediction
|
|
sequence = "ATGCGTACGTTAGC..." # Your DNA sequence
|
|
results = predict_prf(sequence=sequence)
|
|
|
|
# View top predictions
|
|
print(results[['Position', 'Ensemble_Probability', 'Short_Probability', 'Long_Probability']].head(10))
|
|
```
|
|
|
|
### Visualization
|
|
```python
|
|
from FScanpy import plot_prf_prediction
|
|
|
|
# Generate prediction plot
|
|
results, fig = plot_prf_prediction(
|
|
sequence=sequence,
|
|
short_threshold=0.65, # HistGB threshold
|
|
long_threshold=0.8, # BiLSTM-CNN threshold
|
|
ensemble_weight=0.4, # 40% Short, 60% Long
|
|
title="PRF Prediction Results"
|
|
)
|
|
```
|
|
|
|
### Advanced Usage
|
|
```python
|
|
from FScanpy import PRFPredictor
|
|
import pandas as pd
|
|
|
|
# Create predictor instance
|
|
predictor = PRFPredictor()
|
|
|
|
# Batch prediction on pre-extracted regions
|
|
data = pd.DataFrame({
|
|
'Long_Sequence': ['ATGCGT...' * 60, 'GCTATAG...' * 57] # 399bp sequences
|
|
})
|
|
results = predictor.predict_regions(data, ensemble_weight=0.4)
|
|
|
|
# Sequence-level prediction with custom parameters
|
|
results = predictor.predict_sequence(
|
|
sequence=sequence,
|
|
window_size=1, # Step size for sliding window
|
|
ensemble_weight=0.3, # Model weighting
|
|
short_threshold=0.5 # Filtering threshold
|
|
)
|
|
```
|
|
|
|
## 🎛️ Ensemble Weight Configuration
|
|
|
|
The `ensemble_weight` parameter controls the weight ratio between HistGB and BiLSTM-CNN models:
|
|
|
|
| ensemble_weight | HistGB Model | BiLSTM-CNN Model | Characteristics | Best For |
|
|
|----------------|-------------|------------------|-----------------|----------|
|
|
| **0.2-0.3** | 20-30% | 70-80% | **High specificity**, reduces false positives | Precise validation, clinical applications |
|
|
| **0.4** | 40% | 60% | **Optimal balance**, highest AUC | Standard analysis (recommended) |
|
|
| **0.6-0.8** | 60-80% | 20-40% | **High sensitivity**, captures more sites | High-throughput screening, exploratory research |
|
|
|
|
### Model Characteristics
|
|
- **HistGB Model**: Excels at identifying true negatives, conservative predictions, low false positive rate
|
|
- **BiLSTM-CNN Model**: Excels at identifying true positives, sensitive predictions, captures more potential sites
|
|
|
|
### Weight Selection Examples
|
|
```python
|
|
# High specificity configuration (favoring HistGB)
|
|
precise_results = predict_prf(sequence, ensemble_weight=0.25)
|
|
|
|
# Optimal balance configuration (4:6 ratio)
|
|
balanced_results = predict_prf(sequence, ensemble_weight=0.4)
|
|
|
|
# High sensitivity configuration (favoring BiLSTM-CNN)
|
|
sensitive_results = predict_prf(sequence, ensemble_weight=0.7)
|
|
```
|
|
|
|
## 📊 Core Functions
|
|
|
|
### Main Prediction Interface
|
|
```python
|
|
predict_prf(
|
|
sequence=None, # Single/multiple sequences or None
|
|
data=None, # DataFrame with 399bp sequences or None
|
|
window_size=3, # Sliding window step size
|
|
short_threshold=0.1, # Short model filtering threshold
|
|
ensemble_weight=0.4, # Short model weight (0.0-1.0)
|
|
model_dir=None # Custom model directory
|
|
)
|
|
```
|
|
|
|
### Visualization Function
|
|
```python
|
|
plot_prf_prediction(
|
|
sequence, # Input DNA sequence
|
|
window_size=3, # Scanning step size
|
|
short_threshold=0.65, # Short model threshold for plotting
|
|
long_threshold=0.8, # Long model threshold for plotting
|
|
ensemble_weight=0.4, # Model weighting
|
|
title=None, # Plot title
|
|
save_path=None, # Save file path
|
|
figsize=(12,8), # Figure size
|
|
dpi=300 # Resolution for saved plots
|
|
)
|
|
```
|
|
|
|
### PRFPredictor Class Methods
|
|
```python
|
|
predictor = PRFPredictor()
|
|
|
|
# Sequence prediction (sliding window)
|
|
predictor.predict_sequence(sequence, ensemble_weight=0.4)
|
|
|
|
# Region prediction (batch processing)
|
|
predictor.predict_regions(dataframe, ensemble_weight=0.4)
|
|
|
|
# Feature extraction
|
|
predictor.extract_features(sequences)
|
|
|
|
# Model information
|
|
predictor.get_model_info()
|
|
```
|
|
|
|
## 📈 Output Fields
|
|
|
|
### Prediction Results
|
|
- **`Position`**: Position in the original sequence
|
|
- **`Ensemble_Probability`**: Final ensemble prediction (main result)
|
|
- **`Short_Probability`**: HistGradientBoosting prediction (0-1)
|
|
- **`Long_Probability`**: BiLSTM-CNN prediction (0-1)
|
|
- **`Ensemble_Weights`**: Model weight configuration used
|
|
|
|
### Sequence Information
|
|
- **`Short_Sequence`**: 33bp sequence for Short model
|
|
- **`Long_Sequence`**: 399bp sequence for Long model
|
|
- **`Codon`**: 3bp codon at the prediction position
|
|
- **`Sequence_ID`**: Identifier for multi-sequence inputs
|
|
|
|
## 🔬 Integration with FScanR
|
|
|
|
FScanpy works seamlessly with the FScanR pipeline for comprehensive PRF analysis:
|
|
|
|
```python
|
|
from FScanpy import fscanr, extract_prf_regions, predict_prf
|
|
|
|
# Step 1: BLASTX analysis with FScanR
|
|
blastx_results = fscanr(
|
|
blastx_data,
|
|
mismatch_cutoff=10,
|
|
evalue_cutoff=1e-5,
|
|
frameDist_cutoff=10
|
|
)
|
|
|
|
# Step 2: Extract PRF candidate regions
|
|
prf_regions = extract_prf_regions(original_sequence, blastx_results)
|
|
|
|
# Step 3: Predict with FScanpy
|
|
final_predictions = predict_prf(data=prf_regions, ensemble_weight=0.4)
|
|
```
|
|
|
|
## 📚 Documentation
|
|
|
|
- **[Complete Tutorial](tutorial/tutorial.md)**: Comprehensive usage guide with examples
|
|
- **[Demo Notebook](FScanpy_Demo.ipynb)**: Practical usage of each function in the library and demonstration of analysis workflow results
|
|
- **[Predict Sample Interpretation](tutorial/predict_sample.ipynb)**: Detailed interpretation of FScanpy's plotting results and signal analysis
|
|
|
|
## 📝 Citation
|
|
|
|
If you use FScanpy in your research, please cite:
|
|
|
|
```bibtex
|
|
|
|
```
|
|
|
|
## 🏗️ Dependencies
|
|
|
|
FScanpy automatically installs all required dependencies:
|
|
- `numpy>=1.24.3`
|
|
- `pandas>=2.2.3`
|
|
- `tensorflow>=2.10.1`
|
|
- `scikit-learn>=1.6.0`
|
|
- `matplotlib>=3.9.4`
|
|
- `joblib>=1.4.2`
|
|
- `biopython>=1.85`
|
|
- `wrapt>=1.17.0`
|
|
|
|
---
|
|
|
|
**FScanpy** - Advancing programmed ribosomal frameshifting research through machine learning 🧬
|